Role of XmnI polymorphism in HbF induction in HbE/β and β-thalassemia patients

Hossain M1, Noor FA1,2, Bhuyan GS3, Qadri SS1, Mannoor K1,3*

1Laboratory of Genetics and Genomics, institute for developing Science and Health initiatives, Mohakhali, Dhaka-1212, Bangladesh; 2Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh; 3Infectious Disease Laboratory, institute for developing Science and Health initiatives, Mohakhali, Dhaka-1212, Bangladesh.

Abstract

Thalassemia is one of the most common genetic blood disorders worldwide. Patients with β-thalassemia major and HbE/β-thalassemia are blood transfusion-dependent. If no blood transfusion is given, 85% of patients with severe homozygous or compound heterozygous β-thalassemia will die by 5 years of age. Hemoglobin F or fetal hemoglobin has been known to play a role in ameliorating clinical manifestations in these patients. In all β-thalassemia, Hb F levels are relatively increased due to the selective survival of the erythroid precursors that synthesize relatively more γ-chains. The expression of HbF is up-regulated by three different loci, namely, -158(C → T) (Xmn1-Gγ), BCL11A, and HBS1L-MYB intergenic region. Genetic determinants influencing HbF response may lie within the β-globin complex or they may be trans-acting components. The C>T substitution (rs7482144) at position –158 of the Gγ-globin gene, referred to as the Xmn1-Gγ polymorphism, is a common sequence variant in all population and is present at a frequency of 0.32 to 0.35. Although HbF concentrations and F cells are minimal in normal adults, clinical studies have shown that, under conditions of hematopoietic stress, for example, in homozygous β-thalassemia and sickle cell disease, the presence of the Xmn1-Gγ site favors a higher HbF response. There is evidence that a homozygous state of Xmn1 polymorphic site, which is associated with increased expression of Gγ-gene, may play an important role, among other factors, in improving the clinical features of homozygous β-thalassemia and its clinical presentation as thalassemia intermedia. Favorable Response to Hydroxyurea (HU) treatment has been shown to be largely associated with the presence of the C>T polymorphism at -158 Xmn1 site (HBG2: c.- 53-158C>T), which is upstream of the Gγ-globin gene and HU therapy exerts a 2- to 9- fold increase in γ-mRNA expression in β-thalassemia patients. In addition to discussing some effects of Xmn1 polymorphism on beta-thalassemia, this review will give special focus on discussing the importance of Xmn1 polymorphism in determining the clinical heterogeneity of hemoglobin E-beta thalassemia.

Key words: Thalassemia, β-thalassemia, HbE/β-thalassaemia, Xmn1-Gγ polymorphism, Hydroxyurea.

Introduction

Thalassemia is known as the most common monogenic blood disorder. The disorder is associated with defective or even absent synthesis of α- or β-globin subunits of hemoglobin (Hb) A (α2β2). The diseases are inherited as recessive manner. That is, both alleles of one or more of the globin genes located on chromosomes 11 (β) and 16 (α) must be inherited to cause the disorder.1 The thalassemia syndrome is characterized based on the affected globin chains. Alpha (α) thalassemia is caused by reduced (α+) or absent (α0) synthesis of alpha globin chains, whereas beta (β) thalassemia is caused by reduced (β+) or absent (β0) synthesis of beta globin chains.1,2 More than 200 deletions or point mutations that impair transcription, processing, or translation of α- or β-globin mRNA have been identified.1,3,4,9 However, only 20 mutations account for 90% of the abnormal β-gene.5 Hemoglobin E (HbE) is another abnormal structural variant of hemoglobin, resulting from a substitution mutation G>A in codon 26 (Glu>Lys) of the β-globin gene, mostly prevalent in South-East Asian population.6,7,8,10 HbE/β-thalassemia results from co-inheritance of a β-thalassemia allele from one parent and the structural variant hemoglobin E from the other.7,8,11 Worldwide,

Correspondence: Kaissar Mannoor, institute for developing Science and Health initiatives, Mohakhali, Dhaka-1212, Bangladesh; e-mail: kaissar@ideshi.org

ORCID:
HbE/β-thalassemia may be one of the most important hemoglobinopathies because of the presence high gene frequencies for both HbE and β-thalassemia.12-14

It is estimated that as many as 300,000 infants are born with major hemoglobinopathies worldwide each year and 60,000 to 70,000 of these patients with hemoglobinopathies are β-thalassemia major and the disorder is mainly seen in the countries of thalassemia belt including Mediterranean area, Middle East, Far East, and East Asia.15-20 Globally, severe form of β-thalassemia accounts for 50,000 to 100,000 deaths per year in all age groups and about 0.5% - 0.9% deaths of under-5 children of low or middle income countries.21 According to thalassemia International Federation (TIF), about 23,000 children are born with transfusion-dependent β-thalassemia major each year, while a smaller ill-defined number have the non-transfusion dependent thalassemia (NTDT), a form of β-thalassemia intermedia. According to World Health Organization (WHO), there are approximately 3% β-thalassemia carriers and 4% hemoglobin E (HbE) carriers in Bangladeshi population.23 It is highly concerning that with the birth rate of 21.6/1000 in Bangladesh, it could be estimated that nearly 2500 thalassemia major cases are added every year in the country.24 However, thalassemia is a preventable disorder and the effective preventive measures can be taken through social awareness and carrier screening program to discourage marriage between two carriers. Prenatal diagnosis followed by abortion can be another preventive measure provided that social and religious legislations support the matter.

However, the thalassemia is heterogeneous at the molecular level, with more than 200 disease causing mutations.12 In erythroid development, the γ-globin expression is regulated by interactions between cis-acting sequences within the β-globin gene cluster and trans-acting factors such as BCL11A, cMYB, and TOX.12,25 The expression of HbF level is known to be up-regulated by three different loci: HBG2: γ-158C>T on 11p15.4, BCL11A on 2p16.1 and HBS1L-MYB intergenic region on 6q23.3. The most significant genetic factor in cis sequence associated with high HbF is Xmn1 polymorphism located at -158 upstream to the γ-globin gene.26 Although the production of Hb F is almost switched off at birth, all adults continue to produce residual amounts of Hb F, which is usually <1%. In all β-thalassemia, HbF levels are relatively increased due to the selective survival of the erythroid precursors that synthesize relatively more γ-chains.4 Xmn1 polymorphism is responsible for the induction of γ-chains in adult patients with β-thalassemia.

Pathophysiology and Clinical Variability of β-thalassemia and HbE/β-thalassemia: Although clinical spectra vary depending on coinheritance of other genetic modifiers, the underlying pathology among the types of thalassemia is similar.27 This pathology is characterized by decreased Hb production and minimal red blood cell (RBC) survival, resulting from the cellular aggregation of excess unaffected globin chain, which form unstable homo-tetramers that precipitate as inclusion bodies. α-homo-tetramers in β-thalassemia are more unstable than β-homo-tetramers in α-thalassemia and therefore precipitate earlier in the RBC life span, causing marked RBC damage and severe hemolysis associated with ineffective erythropoiesis (IE) and extramedullary hemolysis.28 (figure:1) Without receiving blood transfusion, 85% of patients with severe homozygous or compound heterozygous β-thalassemia patients will succumb to deaths by 5 years of age due to severe anemia.29

![Figure 1: Mechanism of Ineffective Erythropoiesis (IE) and hemolysis in thalassemia. (Rachmilewitz EA and Giardina PJ, 2011)](image)
β-thalassemia includes three main forms: Thalassemia Major, variably referred to as "Cooley's Anemia" and "Mediterranean Anemia", Thalassemia Intermedia, and Thalassemia Minor, which is also called "β-thalassemia carrier" or "β-thalassemia trait" or "heterozygous β-thalassemia". Individuals with β-thalassemia major (β0/β0) usually come to medical attention within the first two years of life and require regular RBC transfusions to survive. Patients with β-thalassemia intermedia (β+β0 or, β+/β+) have milder anemia and do not require or only occasionally require transfusion. (Figure:2a) And individuals with β-thalassemia minor (β/β+, β/β0 or mild β/β+) are carriers and they are usually clinically asymptomatic but sometimes have a mild anemia. Table-1 illustrates common genotypes leading to a β-thalassemia intermedia phenotype. (figure:2b)

Figure 2: Schematic representation of inherited β-globin variants and related beta-chain and red blood cell (RBC) phenotype.

The HBB variants are represented by grey exons, whereas the wild type alleles are represented by blue exons. Production of β-globin chain from a single/double wild type alleles is represented by one/two-colored wild type alleles is represented by one/two-colored schemata of the β-globin protein, respectively. Grey colored β-globin diagrams refer to below-normal synthesis levels of the protein, created by mutant HBB variants. Bright red-colored RBCs represent normal cell phenotype, while pink colored ones represent microcytic, hypochromic cells characteristic of beta-thalassemia phenotype. Relative number of RBC reflects relative levels of anemia among the three classes of β-thalassemia compared to the wild type RBC pool.

Table 1: Genotype-phenotype associations in β-thalassemia.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
<th>Clinical severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent carrier</td>
<td>Silent β/β</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>Trait/Minor</td>
<td>B0/β, β/β or mild β+ / β</td>
<td>Borderline abnormalities</td>
</tr>
<tr>
<td>Intermedia</td>
<td>B0/mild β+ / β</td>
<td>Late presentation</td>
</tr>
<tr>
<td>Intermedia</td>
<td>B0/silent β, β+ / β, mild β+ / silent β, or silent β</td>
<td>Transfusion dependent</td>
</tr>
<tr>
<td>Intermedia</td>
<td>B0 / β0, β+ / β, or β+ / β and deletion or non-deletion α-thalassemia</td>
<td>Clinical severity is variable and ranges between minor to major</td>
</tr>
<tr>
<td>Intermedia</td>
<td>B0 / B0, β+ / β, or β+ / β and increased capacity for γ-chain synthesis</td>
<td></td>
</tr>
<tr>
<td>Intermedia</td>
<td>Deletion forms of δβ-thalassemia and HPFH</td>
<td></td>
</tr>
<tr>
<td>Intermedia</td>
<td>B0 / β or β+ / β and ααα or αααα duplications</td>
<td></td>
</tr>
<tr>
<td>Intermedia</td>
<td>Dominant β-thalassemia (inclusion body)</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>B0 / B0, β+ / β, or β+ / β</td>
<td>Early presentation</td>
</tr>
<tr>
<td>Major</td>
<td>Severe anemia</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>Transfusion-dependent</td>
<td></td>
</tr>
</tbody>
</table>

Hb E/β-thalassemia results from co-inheritance of a β-thalassemia allele from one parent and the Hemoglobin E, structural variant of hemoglobin, from the other. Hemoglobin E results from a G>A substitution in codon 26 of the β globin gene, which produces a structurally abnormal hemoglobin (HbE). The pathophysiology of Hb E/β-thalassemia is related to many factors including reduced β-chain synthesis resulting in globin chain imbalance, ineffective erythropoiesis, apoptosis of nucleated RBCs, oxidative damage and shortened red cell survival. Depending on the severity of symptoms, HbE/β-thalassemia can be divided into three categories. Individuals with mild HbE/β-thalassemia maintain Hb levels between 9 and 12
g/dl and usually do not develop clinically significant problems. Individuals with moderately severe HbE/β-thalassemia maintain Hb levels between 6 and 7 g/dl and the clinical symptoms are similar to thalassemia intermedia. The Hb level can be as low as 4-5 g/dl in the patients with severe HbE/β-thalassemia and usually manifest symptoms similar to thalassemia major and are treated as thalassemia major patients.

The Globin Genes: There are eight functional globin genes as well as several pseudo genes. The globin genes are found in two loci, each of which has an associated upstream regulatory element. The α-globin locus on chromosome 16 contains three of the globin genes.34,35 Listed in 5′ to 3′ order these are Hemoglobin subunit zeta (HBZ), Hemoglobin subunit alpha 2 (HBA2) and Hemoglobin subunit alpha 1 (HBA1).36 (figure:3)

![Chromosomal organization of the α- and β-globin gene clusters. A)](image)

The genes of the β-globin cluster (ε, γ, &), and β) are present on chromosome 11 in the same order in which they are expressed during development. The β-Locus Control Region (β-LCR) is a major regulatory element located far upstream of the genes of the cluster that is necessary for the high level of expression of those genes. (B) The genes of the α-globin gene cluster (ζ, α1, and α2) are present on chromosome 16, also in the same order in which they are expressed during development. HS-40 is a major regulatory element located far upstream of the genes of the cluster that is necessary for their high level of expression. (C) During fetal life, Hb F (α2γ2) is the predominant type of hemoglobin. Hemoglobin switching refers to the developmental process that leads to the silencing of γ-globin gene expression and the reciprocal activation of adult β-globin gene expression. This results in the replacement of Hb F by Hb A (α2β2) as the predominant type of hemoglobin in adult life. (Frenette PS and Atweh GF. 2007)

The remainin five functional globin genes are found in the β-globin locus on chromosome 11.37,38 Listed in 5′ to 3′ order, these are Hemoglobin subunit epsilon 1 (HBE1), Hemoglobin subunit gamma 2 (HBG2), Hemoglobin subunit gamma 1 (HBG1), Hemoglobin subunit delta (HBD) and Hemoglobin subunit beta (HBB). An upstream regulatory element known as the β-Locus Control Region (β-LCR) is required for expression of these genes.39 Fetal Hb (Hbf, α2γ2) is the predominant form during fetal development but is largely replaced by adult Hb (HbA, α2β2) following a shift from gamma (γ)- to β-globin gene expression that begins around birth.40 Two main mechanisms control globin gene switching, competition for access to the upstream regulatory element and autonomous gene silencing.41 Autonomous gene silencing plays an important role in the switching from fetal to adult hemoglobin.

Hemoglobin F: Hemoglobin F (Hbf, α2γ2) accounts for up to 90% of the circulating hemoglobin at birth. Its synthesis starts to decline during the third trimester, and it is gradually replaced by adult hemoglobin, HbA (α2β2) over the first year of life. Normal adults have less than 1% of Hbf, apparently confined to a subset of red blood cells called F cells,42 which constitute about 3% of the erythrocytes.43 Several inherited and acquired conditions are associated with the persistence or the reactivation of Hbf production.44

Most of the genetic disorders associated with persistent Hbf production involve alterations of the structure of the β-globin cluster. The highest adult levels of Hbf are seen in β- and δβ-thalassemia, or hereditary persistence of fetal hemoglobin (HPFH), in which Hbf can constitute up to 100% of the hemoglobin. It is now clear that HPFH is an extremely heterogeneous group of conditions, some of which result from deletions of the β-globin gene or point mutations in the γ-globin gene promoter regions, whereas others arise from genetic determinants that segregate independently of the β-globin gene cluster.45
Several acquired conditions are associated with modest elevations of HbF. They include pregnancy, recovery from marrow hypoplasia, aplastic anemia, leukemia, thyrotoxosis, hepatoma, and juvenile chronic myeloid leukemia.\(^{46}\) The latter condition is exceptional in that it seems to reflect a genuine reversion to fetal erythropoiesis.\(^{47}\) The remainder seems to be examples of the transient reactivation of HbF under conditions of acute erythropoietic stress, that is, rapid expansion of the erythron.\(^{48}\)

Mechanism for increased HbF production: According to Rees DC et al. (1999) proposed a possible mechanism by which HbF may be increased.\(^{44}\) In this model, the absolute numbers of F-cell progenitors would expand in proportion to the increase in all red blood cell precursors. In both transfused and non-transfused patients, the F-cell precursors would have a selective advantage because of their lesser degree of globin chain imbalance, leading to the observed increase in HbF levels. The observed change in α/γ ratio is not compatible with this mechanism alone, and suggests the possibility that there is a genuine increase in HbF and/or F-cell production. This preferential production of F reticulocytes has typically been thought to be important in an acute increase in Epo, rather than the chronic elevations seen in thalassemia.\(^{48,49}\) This proposed mechanism is summarized in (figure 4).

![Figure 4: Proposed mechanism for increased HbF production in β-thalassemia syndromes. (Rees DC et al., 1999)](image)

Association of XmnI polymorphism with Hb F induction: Genetic determinants influencing Hb F response reside within the β-globin complex or trans-acting elements. The C>T substitution (rs7482144) at position -158 of the Gγ-globin gene, referred to as the XmnI-Gγ polymorphism, is a common sequence variant in all population groups and is present at a frequency of 0.32 to 0.35.\(^{50,51}\)

Although the increase in Hb F and F cells are minimal in normal people, clinical studies have demonstrated that under conditions of hematopoietic stress, for example, in homozygous β-thalassemia and sickle cell disease, the presence of the XmnI-Gγ site favors a higher HbF response.\(^{52,53}\) However, the -158 C > T polymorphism is located near a nuclease hypersensitive site at 50 to 150 bp upstream region of the Gγ-globin gene. Perhaps the -158 substitution reduces the binding of transcription factor(s) that silence(s) the γ-globin gene expression in adult cells. Therefore, the γ-globin gene is reactivated in adult life.\(^{54,55}\)

The HbF is a mixture of two molecular species α2γ2 and α2Aγ2 in which the constituent γ-chains contain a glycine or an alanine at position 136. During the switch from fetal to adult, there is a quantitative change in the γ-chain composition. Normally, the Gγ:Aγ ratio is 70:30 at the time of birth and 40:60 in the trace amounts of Hb F found in the adult. This ratio is modified in many hemoglobin disorders, but in the presence of XmnI polymorphic site, this ratio looks like as it is at the time of birth.\(^{56}\)

The frequency of XmnI polymorphic site: The prevalence of XmnI polymorphic site, which is located at 5′ to the Gγ-gene, is different among various population (Table:2). There is evidence that a homozygous state for XmnI polymorphic site, which is associated with increased expression of Gγ-gene, may play an important role among other factors in ameliorating the clinical features of homozygous β-thalassemia and its clinical presentation as thalassemia intermedia.\(^{57}\) Furthermore, the presence of XmnI polymorphic site 5′ to the Gγ-globin promoter region was positively correlated with elevated synthesis of fetal Hb and its Gγ-globin component in term newborn infants and is associated with delayed switch from fetal to adult hemoglobin. It is unknown how XmnI polymorphic site influences the expression of the Gγ-globin gene. It seems that interaction of a multi-protein transcription complex to be involved. In a
genome-wide linkage study of large Asian Indian kindred, a genetic interaction between the Xmn1 polymorphic site and a locus on chromosome 8q was reported to influence adult F cell (FC) levels. Unlike the rare mutations in the γ-globin promoter that are consistently associated with large discrete effects on the increase of HbF levels in the range of 10–35% in heterozygotes, the so-called pan-cellular hereditary persistence of fetal hemoglobin (HPFH), the change at Gγ-158 does not always raise the Hb F levels in otherwise normal individuals. The Xmn1 polymorphic site is not a recognized binding motif for any of the known transcription factors.

Table II: Allelic Frequency of Xmn1 polymorphic site in different population groups

<table>
<thead>
<tr>
<th>Country/Population groups</th>
<th>Sample Size (n)</th>
<th>Types of population</th>
<th>Frequency</th>
<th>Reference no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>100</td>
<td>Normal</td>
<td>0.32</td>
<td>56</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian</td>
<td>300</td>
<td>Healthy</td>
<td>0.32–0.35</td>
<td>50</td>
</tr>
<tr>
<td>European</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>64</td>
<td>β-thalassemia</td>
<td>0.25</td>
<td>77</td>
</tr>
<tr>
<td>Eastern India</td>
<td>64</td>
<td>β-thalassemia and HbE/\beta-thalassemia</td>
<td>0.48</td>
<td>78</td>
</tr>
<tr>
<td>Northern India</td>
<td>101</td>
<td>β-thalassemia a major and intermedia</td>
<td>0.28</td>
<td>79</td>
</tr>
<tr>
<td>Southern Iran</td>
<td>48</td>
<td>β-thalassemia a major intermedia</td>
<td>0.41</td>
<td>80</td>
</tr>
<tr>
<td>Western Iran</td>
<td>197</td>
<td>β-thalassemia a major</td>
<td>0.39</td>
<td>60</td>
</tr>
<tr>
<td>Malaysia</td>
<td>107</td>
<td>β-thalassemia a major</td>
<td>0.66</td>
<td>81</td>
</tr>
</tbody>
</table>

However, the Hb F response associated with the Xmn1 polymorphic site is usually moderate and may not be sufficient to explain the wide difference in phenotype observed in some cases. According to Dallas SK et al, there was a significant correlation between the presence of Xmn1 polymorphic site and increased Gγ: Aγ ratio. However, the HbF level was not significantly increased in the presence of Xmn1 polymorphic site in their study. Although Xmn1 polymorphic site maintains a Gγ: Aγ ratio typical of fetal life, it does not necessarily cause elevation of HbF. The latter seems to depend on factors other than the Xmn1 polymorphic site.

Table III: Parameters associated with Xmn1 polymorphism in β-thalassemia patients studied by Hooshang N et al (2010)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Xmn1 C/C (+/+)</th>
<th>Xmn1 C/T (+/-)</th>
<th>Xmn1 T/T (-/-)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb F level %</td>
<td>97.1</td>
<td>94.4</td>
<td>91.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Gγ%</td>
<td>74.8</td>
<td>71.4</td>
<td>66.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Aγ%</td>
<td>25.1</td>
<td>28.6</td>
<td>33.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Gγ/Aγ ratio</td>
<td>3 ± 0.5</td>
<td>2.5 ± 0.4</td>
<td>2 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Age of first blood transfusion (months)</td>
<td>12 ± 8</td>
<td>11 ± 5</td>
<td>10 ± 5</td>
<td>0.16</td>
</tr>
<tr>
<td>Facial bone deformity %</td>
<td>17.5</td>
<td>25.4</td>
<td>57.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Splenectomy %</td>
<td>15.9</td>
<td>19.1</td>
<td>65</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Genotyping of Gγ-Xmn1 polymorphism: Xmn1 polymorphism is heterogeneously distributed in different parts of the world. The genomic DNAs are genotyped employing Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique. The genotypes were categorized into homozygous wild type (CC, +/+), heterozygous (CT, +/−) and homozygous variant (TT, −/−) Another study was performed to detect the Gγ-Xmn1 polymorphism genotype in patients using the Tetra-Primer ARMS-PCR technique.

Association of Gγ-Xmn1 polymorphism with Hydroxyurea (HU) treatment: HU therapy has been successfully used in thalassemia intermedia patients and is associated with a significant improvement in hematological parameters and quality of life. Hydroxyurea efficacy in treatment of β-thalassemia major has been variable.
in different studies. Response to HU has been shown to be largely associated with the presence of the C>T polymorphism at -158 XmnI site (HBG2c.-53-158C>T) upstream of the Gγ-globin gene and it is thus far the most studied nucleotide change to have a significant association with drug response. This particular polymorphism acts as an enhancer of HbF expression during erythropoietic stress, resulting in a beneficial effect in Sickle cell disease (SCD) patients. HU is a myelo-suppressive agent that may enhance fetal hemoglobin production. Several pharmacologic agents, such as 5-azacytidine, erythropoietin, butyrates including Hydroxyurea have been shown to stimulate γ-globin gene expression in vivo and therefore might reduce the severity of clinical symptoms in patients with intermediate thalassemia. Moreover, one study on β-thalassemia patients treated with Hydroxyurea has revealed a significant correlation between the presence of T allele in XmnI polymorphic site and the better treatment response. Hydroxyurea therapy exerts a 2- to 9-fold increase in γ-mRNA expression in β-thalassemia patients, leading to improvement in the alpha/non–alpha chain imbalance and more-effective erythropoiesis. However, Kosaryan et al. suggested that β-thalassemia major or intermedia with XmnI polymorphism of (C/T or +/−) showed better response to hydroxyurea therapy than (T/T or −/−) genotype. However, this finding was not supported by other studies. We did not find any report on association of Gγ-XmnI polymorphism with Hydroxyurea (HU) treatment in Bangladeshi population.

Conclusion

The high level of HbF can ameliorate the severity of the disease by reducing the excess alpha chain imbalance in patients with Sickle cell disease (SCD), β-thalassemia major and HbE/β-thalassemia. Therefore, for investigating the success of Hydroxyurea medication in diseased population, a follow-up study is required to determine the effect of HU treatment on HbF induction in the presence of T allele in thalassemia patients. In addition, studies on other potential genetic markers which may help in predicting the therapeutic intervention are required. Till now, there is no study demonstrating the association between XmnI-Gγ polymorphism and HbE/β-thalassemia disease severity in Bangladesh. So, wet lab studies are necessary to observe the effect of hydroxyurea (HU) for treating Bangladeshi thalassemia patients, especially Hb E/β thalassemia patients.

References

41. Stamatoyannopoulos G. Control of globin gene expression during development and erythroid

44. Rees DC, Porter JB, Clegg JB, Weatherall DJ. Why are hemoglobin F levels increased in HbE/β thalassemia? Blood. 1999 Nov 1;94:3199-204.

67. Said F, Abdel-Salam A. Xmn1 polymorphism: Relation to β-thalassemia phenotype and genotype in

Karimi M, Yarmohammadi H, Farjadian S, Mighaddam Z, cappeliini MD, Giordano PC. Beta thalassemia intermedia from southern Iran: IVSII.1(G:A) is the prevalent thalassemia intermedia allele. Hemoglobin.2002; 26:147-54.